Generalized Chebyshev Interpolation and Its Application to Automatic Quadrature

نویسندگان

  • Takemitsu Hasegawa
  • Tatsuo Torii
  • Ichizo Ninomiya
  • ICHIZO NINOMIYA
چکیده

A generalized Chebyshev interpolation procedure increasing a fixed number of sample points at a time is developed and analyzed. It is incorporated into an efficient automatic quadrature scheme of Clenshaw-Curtis type. Numerical examples indicate that the present method is efficient not only for well-behaved functions but for those with discontinuous low order derivatives by virtue of adequate error estimation as well as saving of sample points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized Birkhoff-Young-Chebyshev quadrature formula for analytic functions

A generalized N-point Birkhoff–Young quadrature of interpolatory type, with the Chebyshev weight, for numerical integration of analytic functions is considered. The nodes of such a quadrature are characterized by an orthogonality relation. Some special cases of this quadrature formula are derived. 2011 Elsevier Inc. All rights reserved.

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

Exponentially Convergent Fourier-Chebshev Quadrature Schemes on Bounded and Infinite Intervals

The Clenshaw Curtis method for numerical integration is extended to semiinfinite ([_0, 30] and infinite [-0% oc] intervals. The common framework for both these extensions and for integration on a finite interval is to (1) map the integration domain to tc[0, z], (2) compute a Fourier sine or cosine approximation to the transformd integrand via interpolation, and (3) integrate the approximation. ...

متن کامل

An Algorithm Based on the Fft for a Generalized Chebyshev Interpolation

An algorithm for a generalized Chebyshev interpolation procedure, increasing the number of sample points more moderately than doubling, is presented. The FFT for a real sequence is incorporated into the algorithm to enhance its efficiency. Numerical comparison with other existing algorithms is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010